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MISSING PULSE CLUTTER PROCESSING

1. INTRODUCTION

Missing radar return pulses in a coherent processing interval (CPI) can seriously degrade the
clutter processing and detection performance of a radar. The clutter processing is degraded by miss-
ing pulses for either a moving target indication (MTI) filter or a Doppler filter bank. Missing pulses
can occur for several different reasons. Missing pulses result from the blanking of strong interference
pulses that may be received from an emitter. These pulses are usually blanked to avoid the associated
false alarms or to avoid desensitizing a radar that is using constant false alarm rate (CFAR) process-
ing. Missing pulses can occur in the returns from ambiguous range intervals if no filler pulses are
used. They can also occur in radar return pulses that are eclipsed by transmissions that occur at the
same time as the return pulse. By proper design, new filter weights can substantially reduce losses
resulting from a missing pulse. In this report we consider a single missing pulse in a CPI consisting
of N pulses. New weighting techniques are investigated, and the results of Ref. 1 are extended to
describe the losses that occur relative to the no-missing-pulse case for nonoptimal and optimal pro-
cessing (optimal is in the Neyman-Pearson sense).

Section 2 examines the performance of conventional clutter processing techniques when a miss-
ing pulse occurs. Section 3 presents optimal processing for the missing pulse case. Results are given
that show the effects of missing pulses relating to the number of pulses in a CPI, the normalized spec-
tral width of the clutter power spectrum, and the clutter-to-thermal-noise ratio. Section 4 provides
techniques for finding suboptimum filters that trade off processing complexity. Section 5 considers
implementations of these designs.

2. PERFORMANCE DEGRADATION BY USING CONVENTIONAL CLUTTER FILTERS

When a pulse is missing, the performance of a filter degrades relative to the no-missing-pulse
case. This degradation in the ability to cancel clutter is examined when conventional filters are used.

We first illustrate the degradation for a conventional four-pulse MTI filter that incorporates a
binomial weighting of (1, -3, 3, -1) for the no-missing-pulse case P0 . The ith missing-pulse case
is designated by Pi, and the effective performance can be obtained by zeroing the ith weighting coef-
ficient of the filter. Thus, for the four-pulse MTI, PI corresponds to a filter weighting of (0, -3, 3,
- 1). Figure 1(a) shows the transfer function 10 log I H(f) j 2 for the four-pulse canceller plotted on
the normalized frequency scale f, where f is the ratio of the Doppler frequency fd to the pulse repeti-
tion frequency fr. H(f) is the Fourier transform of the impulse response of the four-pulse canceller.
Figures 1(b) and l(c) show the transfer functions for missing first and second pulses, respectively.
The power spectral density of the filtered clutter is given by the product of the power spectral density
of the clutter and I H(f) 1 2, From these figures, it is apparent that cancellation of clutter having a
Gaussian power spectrum centered at zero frequency is seriously degraded by the large sidelobes of
the transfer functions for the missing-pulse cases.

Manuscript approved April 16, 1990.
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Figures 2 and 3 show a similar degradation in the ability to cancel clutter. Figure 2(a) shows
the transfer function of the center filter of an eight-point, unweighted Dopper filter bank with no
missing pulse. Figures 2(b) and 2(c) show the degradation in the sidelobes for missing first and
fourth pulses, respectively. Figure 3 shows similar plots for the center filter of an eight-pulse
Chebychev filter bank designed with -40 dB sidelobes. Figures 1 to 3 show that the ability to cancel
clutter diminishes as the missing pulse location becomes closer to the middle of the pulse train.
These results are similar to those of Ward [21, who showed the degradation caused by missing end
pulses that result from ambiguous range returns.

3. OPTIMAL FILTER PERFORMANCE

We next describe the effects of missing pulses for filters that have a weight vector w0 that max-
imizes the probability of detection for a fixed probability of false alarm in Gaussian interference. The
interference consists of clutter plus thermal noise. wo, in Gaussian interference, is also the vector
that maximizes the signal-to-interference ratio S IL The optimal vector w0 is well known and is
given by

wo = kR 1 S*t (1)

where R denotes the N x N covariance matrix of interference, which in turn is given by

E(X*X3, (2)

where X is an N x 1 vector denoting the N interference returns, * denotes conjugation, and 'denotes
transpose. k is a nonzero complex constant. Note in general that the weight w is complex. In
Eq. (1), S is an N x 1 vector representing the moving target signal given by

S-K (3)

where ' 24. First, an N-pulse single filter is described that is matched to a single Doppler fre-
quency. Figure 4(a) shows the transfer function for a five-pulse filter matched to a target whose nor-
malized Doppler shift is f = 0.5, and for a normalized spectral width aT .05, where o is the stan-
dard deviation of the Gaussian power spectrum and T is the interpulse interval that is equal to 1/fr.
The clutter-to-thermal-noise ratio C/No is equal to 30 dB, and the clutter spectrum is centered at zero
frequency. Figure 4(b) shows the transfer function for the third pulse missing. The new weighting is
found by zeroing the third row and column of R and the third element of S in Eq. (1). Again, the
increase in the sidelobe level in the region of the clutter as seen in Figs. 4(a) and 4(b) for the optim-
ized single filters.
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A measure used to assess the performance of a given filter is the gain or improvement of (SI])
as a function of frequency. The gain is defined as

(SL1S14(/Dj

where (S/F.)0 is the signal-to-interference ratio out of the filter and (S/fl1 is the signal-to-interference
ratio into the filter. For a weighting vector, w, the gain at the match point is then given by

G(f = [W'S[ 2 (4)
YwktRw

where y equals (S/f)1 and t denotes the conjugate transpose. The gain is maximized by using the
matced filtPr weighting cr(. (It) at each frequency. Figuire 5(ta) shows the matched filtsw nn as a
function of frequency for a four-pulse processor having an input C/N 0 of 50 and 10 dB. The solid
curve corresponds to no missing pulse, and the curves designated by Pi correspond to the recomputed
optimum gain curves for the ith missing pulse case. At each frequency, a different optimal filter,
given by Eq. (1), is used that is matched to the corresponding frequency. Large differences between
the optimal gain when no pulses are missing and the optimal gain when a pulse is missing can be seen
in Fig. 5(a) for C/NO equal to 50 dR. This difference, which is a flmction of frequency, is termed
loss. Figures 5(b)-5(d) show sinilar plots for increasing N. Note the large loss for the P 3 case at
f = 0.5 in Fig. 5(b). For the larger number of pulses shown in Figs. 5(c) and 5(d), the losses dimin-
ish. Figure 6 shows the loss at f = 0.5 vs N for the centermost pulse missing, different C/N 0 ratios,
and for aT = 0.05. A threshold effect is noted, which shows a rapid decrease in the loss for values
of N larger than the threshold values. In Fig. 7, the loss at f = 0.5 is plotted against aT for N = 6,
with the third pulse missing and for different CINo. Figure 8 shows the loss at f = 0.5 vs aT for
different N, the centermost pulse missing, and for C/N 0 = 30 dB. These curves show that the loss
decreases with decreasing C/NO and increasing N, and also that the loss is dependent on aT. Figure
9 shows the gain measured at f = 0.5 vs aT for N = 6, a missing third pulse, and for C/NO = 10,
30, and 50 dB. Note that although the losses shown in Fig. 7 peak, the actual gain curves monotoni-
cally increase as arT decreases. Figure 10 shows the gain measured at f = 0.5 vs (FT for N 47 8,
and 16, the centermost pulse missing, and CIN0 = 30 dB. Again the gain monotonically increases
as cT decreases. The loss curves indicate the actual losses that are incurred for the missing-pulse
case relative to the no-missing-pulse case. In each situation, optimum weights are used. On the other
hand, the gain curves of Figs. 9 and 10 show the maximum theoretical gains for the missing-pulse
case. These curves are important from a system design standpoint. We mention, at this point, that
usually the loss is greatest at f = 0.5 for a missing pulse near the center of the N pulses; however,
computations have shown this is not always the case.

Figure I I shows the degradation in the gain if the optimum weights for the no-missing-pulse
case P0 are used for the missing third pulse case. This curve is designated P The P3 curve
shows the gain when the weights are optimized for the third pulse missing. The parameters for fig.
11 are N = 5, C/No = 50 dB, and aT = 0.05.
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4. SINGLE AND MIULTIPLE FILTER WEIGHTING TECHNIQUES

This section describes techniques for determining single and multiple filter characteristics that
closely approximate the optimum filter performance described above for a, given missing-pulse loca-
tion. First, filter implementations are described for a single filter that spans the Doppler passband.

Reference 1 suggests a method whereby the matched filter weights found at several values of
frequency are linearly combined by trial and error. The problem, in general, is that it may be diffi-
cult to determine the appropriate frequencies and combination of weightings. A design method for
single filters due to Emerson [3] was investigated for the missing-pulse case. Here a weighting is
sought that maximizes the improvement factor. The improvement factor is the average gain, where
the averaging is done over frequency. This weighting is determined by the eigenvector corresponding
to the minimum eigenvalue of the covariance matrix. A method of linearly combining eigenvectors of
the covariance matrix due to Fletcher [4] was also investigated. We found that these eigenvector
methods are not satisfactory in general for the rimissing-pulse ease. A new metuldu, o b describuud,
was investigated that provides improved performance by using a minimax method implemented by
means of a search algorithm.

It has been found, for the cases investigated, that using the eigenvector weighting corresponding
to the minimum eigenvector results in poor performance when the center pulse is missing for N odd.
Figure 12 shows the optimum gains of a five-pulse processor having no missing pulses and a missing
center pulse, and the bottom curve corresponds to the Emerson eigenvector weighting associated with
the minimum eigenvalue. A large loss in gain occurs around f = 0.5. A second eigenvector
method, also from Ref. 4, was investigated where the the weighting is given by

w = etle, + e*le2 + ... + e*le,, r : N (5)

where ej is the first element of the jth eigenvector. This weighting is derived in Ref. 4 to minimize
the departure of the filter transfer function from a flat passband subject to the constraints that the
filter weight is constrained to the space of the r eigenvectors of the covariance matrix. By combining
more eigenvectors, the passband becomes flatter at the expense of a reduced average gain. However,
this method did not work well for the missing-pulse case. Results are shown in Fig. 13 for r = 2.
The second method in Ref. 4 of imposing an additional constraint on the improvement factor was not
considered. Other eigenvector weightings have been investigated by the authors, and only in some
cases were good results obtained.

A different method, which overcomes these difficulties and results in good perfonnance, is the
minimax log energy (MMLE) method [5]. Here a weighting w is found by iteration, such that

w E arg min maxtiog G0optf) - log GWVf)), (6)
W4 f

where Gp,jJ) is the optimal gain function achievable by optimal filters (1) corresponding to f. G(jf)
is the gain function for the single filter with weighting w. This amounts to minimizing the maximum
deviation between the log of the optimal gain and the log of the gain when the single weight w is
used. The frequency span over which this search takes place is prespecified. Figure 14 shows the
results of applying this method for a single filter weighting.

13
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To derive multiple filters that approximate the optimum gain curves for a given missing-pulse
location, it is found that the method of Andrews [6] can be incorporated to give a good approximation
to the optimum gain curve. This method consists of maximizing the S/I improvement factor within
each of the subbands of N-filters equally spaced across the Doppler space. In this formulation the
signal Doppler is assumed to be uniformly distributed across each subband. Figure 15 shows the
resuits of this design annroach for N = 8, with no missing pulse and for pulse number 4 missing,
respectively. These figures show the contour of the maximum gains of the eight filters, i.e,
G(f) = maxiGJ(f), i 1, 2, ... , 8, where G((f) is the gain function for the ith filter.
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The MMLE design described above can also be incorporated, and Fig. 16 shows the results for
the maximum gains for no missing pulse and for the fourth pulse missing by using an eight-filter
MMLE design that uses the same subbands as in Andrews' design. These filters yield a response that
is very nearly optimum. However, when the MMLE design procedure [51 is used and subband pati-
tioning is not constrained to that of Andrews, the number of filters can be reduced without a large
degradation in performance away from the edges of the band. This is shown in Fig. 17(a) for N = 8
when using only three MMLE filters for the no-missing-pulse case and in Fig. 17(b) for N = 8 when
using three filters for the missing-pulse case.
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5. MPLEMNTATION

Figure 18 shows an adaptive implementation for the interference-pulse case. Here the I/Q data
enter a radinofre-iienrv intprfierenreas- fD deAottr. The detc.tor dete.lLimes H my p±us- s nave Ueen
contaminated by strong interference. If so, this information is sent to the blanking circuitry that zeros
the value. This information is also sent to a coefficient prom and associated logic that chooses the
optimum filter coefficients to be used in the finite impulse response (FIR) filter. This system has the
advantage that a separate FIR filter is not needed for every missing-pukle lnration.

Filter designs such as the MMLE rely heavily on the a priori knowledge of C/No and arT.
When these values are not known exactly, these designs may not yield a nearly optimal processor.
The issue of robust processor design is a subject of future research.

17
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Fig. 1I - Adaptive implementation

6. SUMMARY

In this report we have investigated the degradations incurred with a conventionally weighted
MYl or Doppler filter radar when one of the return pulses is missing. This can occur in several dif-
ferent situations: whenever an impulsive interference pulse is blanked, when a return pulse is
eclipsed by a transmission, and by returns from an ambiguous range interval if no filler pulses are
used. It was shown that for conventional MTI and Doppler filter bank processors the loss in perfor-
mance can be large. The performance when using theoretically optimum filters was described, and
losses relative to the no-missing-pulse case were shown. For the single filter, such as an MTI filter,
which is generally used for relatively small N, it was shown that the eigenvector methods for deter-
mining the weighting can result in large losses. However, the MMLE was shown to give nearly
optimum performance.

For multiple filters, the Andrews method of implementing N filter bands for an N-pulse
transmitted waveform was described that maximizes the average gain for each subband. In this
method, the signal is assumed to be uniformly distributed within each subband, and the covariance
matrix used in the design has missing rows and columns accounting for the missing pulse location.
This was shown in the examples investigated to provide nearly optimum performance. Using the
MMLE method for the same band partitioning also provided nearly optimal performance. However,
it was shown that when using the MMLE design procedure the number of filters could be substan-
tially reduced by using a different partitioning of the frequency bands without incurring a large degra-
dation in performance. Being able to use a reduced number of filters with the MMLE technique
allows for a more practical implementation. Design of robust filtering that is nearly optimum over a
range of C/NO and aT values is the subject of future research.
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